
CS 4530: Fundamentals of Software Engineering
Lesson 3.1: Capturing User Requirements

Jonathan Bell, Adeel Bhutta, Ferdinand Vesely, Mitch Wand
Khoury College of Computer Sciences

1

© 2022 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Theme for this week’s lessons: No Silver
Bullet

2

“There is no single development, in either
technology or management technique, which
by itself promises even one order-of-magnitude
improvement within a decade in productivity, in
reliability, in simplicity.”

Fred Brooks, 1986

Outline of this week’s lessons
Theme: Software Engineering Processes

Topics:
• How do we understand what software we are

supposed to build?
• How do we organize our development activities?
• How do we plan a software project?
• How do we build an effective team?

3

Learning Goals for this Lesson
• At the end of this lesson, you should be able to

• Explain the overall purposes of requirements analysis
• Enumerate and explain 3 major dimensions of risk in Requirements Analysis
• Explain the difference between functional and non-functional requirements,

and give examples of each
• Explain the notion of a user story, with examples. (including conditions of

satisfaction)

4

Overall question:
How to make sure we are building the right thing

5

Requirements
Analysis

Planning &
Design Implementation

Why is requirements analysis hard?

Problems of
understanding

Do users know what they want?

Do users know what we don’t know?

Do we know who are users even are?

Problems of scope
What are we building?

What non-functional quality attributes
are included?

Problems of variability Changing requirements over time

6

Soliciting
Requirements
Option 1: Users tell developers what
they want

• Client determines the
problem and the solution

• Requirements might be
formally provided in the form
of a contract or statement of
work

• Client might provide all
requirements, or just some
subset (e.g. “must be HIPPA
compliant”)

7

Soliciting
Requirements

Option 2: Direct research
• Interview users, ask questions about their problems, propose

potential solutions, examine those solutions
• Embed your client in your design team, or better yet, become an

anthropologist in your client’s environment
• Build requirements documents that demonstrate your

understanding of the requirements, iterate
• Empowers your team with credibility and authority

8

Documentation
can help us
address problems
of understanding

• Documentation helps our whole
team make sure they are building
the right thing

• Documentation can help specify
implicit requirements

• Documentation can also serve as
an artifact to iterate on with a
client

9

Documentation should also capture non-
functional requirements
• Qualities that reflect the execution of the system

• Accessibility
• Availability
• Capacity
• Efficiency
• Performance
• Privacy
• Response Time
• Security
• Supportability
• Usability

• Example: “A 4-core server with 16 GB RAM should be able to service at
least 200 simultaneous clients with less than 300ms latency”

10

Documentation should also capture non-
functional requirements
• Qualities that reflect the evolution of the system

• Testability
• Maintainability
• Extensibility
• Scalability

• Example: “A 3rd party component built conforming to the API defined
in the Canvas LMS specification can create, modify, and delete
assignments on behalf of an authenticated user”

11

Formal Specifications can be
used to document
requirements

• Define all expected behaviors under all
expected conditions

• Works best when domain is well-
understood

12

User Stories can document
requirements from a user’s point of
view

13

As a <role> I can <capability>,
so that <receive benefit>

Specifying what should happen, for whom, and why

Conditions of Satisfaction:
Given <interaction with software,
state of environment>, I expect
<behavior and side effects>

Writing User Stories: INVEST
• Independent
• Negotiable
• Valuable
• Estimable
• Small
• Testable

14

As a <role> I can <capability>,
so that <receive benefit>

User Stories: Example – Backup
Software

15

As a computer user, I want to backup my entire hard drive so
that my files are safe

As a typical computer user, I want to specify folders to backup,
so that my most important files are safe

As a power user, I want to specify subfolders and filetypes
NOT to backup, so that my backup doesn’t fill up with things
that I don’t need to preserve

Conditions of Satisfaction: Backup
Software
• How do we know if we have satisfied the user? Lots of detail doesn’t

fit onto 3x5 card:
• Where do backups get saved?
• What if backup system is unavailable?
• What if backup system is full?
• Do backups ever get rotated/deleted?

• Conditions of satisfaction are a list of common cases and special cases
that must work

16

Conditions of Satisfaction: Backup
Software
• “As a typical computer user, I want to specify folders to backup, so

that my most important files are safe”
• My conditions of satisfaction are:

• If the network and remote backup service are available, and I am not over
my storage quota, the backup should be successful.

• After successfully running, an updated copy of each of the files that I
have requested to be backed up are stored in a redundant, cloud
filesystem

• If a backup is not successful, an error message is prominently displayed
indicating the cause of failure to be in the software, the network, the
remote backup storage, or other

17

Non-Functional Requirements: Backup
Software
• Does “After successfully running, an updated copy of each of the files

that I have requested to be backed up are stored in a redundant,
cloud filesystem” guarantee success?

• What was the transfer speed? (Performance)
• How much temporary disk space did it use to create the backup?

(Performance)
• How long did I spend on the phone with support to set up the software?

(Usability)
• Are my files encrypted, or access controlled at all? (Security)

18

Requirements: Which to pick?

19

• There are four knobs you can adjust when negotiating requirements:
• Project scope
• Project duration
• Project quality
• Project cost

• Usually cost is most constrained: you have a budget to spend, and you
have a headcount of developers to pay

• Determining feasible scope, timeline and maximizing quality is the
subject of much software engineering research, see next lesson

Learning Goals for this Lesson
• At the end of this lesson, you should be able to

• Explain the overall purposes of requirements analysis
• Enumerate and explain 3 major dimensions of risk in Requirements Analysis
• Explain the difference between functional and non-functional requirements,

and give examples of each
• Explain the notion of a user story, with examples. (including conditions of

satisfaction)

20

	CS 4530: Fundamentals of Software Engineering�Lesson 3.1: Capturing User Requirements
	Theme for this week’s lessons: No Silver Bullet
	Outline of this week’s lessons
	Learning Goals for this Lesson
	Overall question:�How to make sure we are building the right thing
	Why is requirements analysis hard?
	Soliciting Requirements
	Soliciting Requirements
	Documentation can help us address problems of understanding
	Documentation should also capture non-functional requirements
	Documentation should also capture non-functional requirements
	Formal Specifications can be used to document requirements
	User Stories can document requirements from a user’s point of view
	Writing User Stories: INVEST
	User Stories: Example – Backup Software
	Conditions of Satisfaction: Backup Software
	Conditions of Satisfaction: Backup Software
	Non-Functional Requirements: Backup Software
	Requirements: Which to pick?
	Learning Goals for this Lesson

