CS 4530: Fundamentals of Software Engineering
Lesson 3.1: Capturing User Requirements

Jonathan Bell, Adeel Bhutta, Ferdinand Vesely, Mitch Wand
Khoury College of Computer Sciences

© 2022 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Theme for this week’s lessons: No Silver
Bullet

“There is no single development, in either
technology or management technique, which
by itself promises even one order-of-magnitude
improvement within a decade in productivity, in
reliability, in simplicity.”

Fred Brooks, 1986

Outline of this week’s lessons

Theme: Software Engineering Processes

Topics:

e How do we understand what software we are
supposed to build?

* How do we organize our development activities?
* How do we plan a software project?
* How do we build an effective team?

Learning Goals for this Lesson

* At the end of this lesson, you should be able to
* Explain the overall purposes of requirements analysis
* Enumerate and explain 3 major dimensions of risk in Requirements Analysis

* Explain the difference between functional and non-functional requirements,
and give examples of each

* Explain the notion of a user story, with examples. (including conditions of
satisfaction)

Overall question:
How to make sure we are building the right thing

LIGLL

How the customer How the project How the analyst Huwﬂupmurm Whmﬂummnﬂ
explainened it. leader understood it. designed it.
Requirements Planning &

Implementation

Analysis Design

Why is requirements analysis hard?

Problems of
understanding

Problems of scope

Problems of variability

Do users know what they want?
Do users know what we don’t know?

Do we know who are users even are?

What are we building?

What non-functional quality attributes
are included?

Changing requirements over time

explainened it.

leader understood it.

Soliciting
Requirements

Option 1: Users tell developers what
they want

* Client determines the
problem and the solution

* Requirements might be
formally provided in the form
of a contract or statement of
work

* Client might provide all
requirements, or just some
subset (e.g. “must be HIPPA
compliant”)

Soliciting
Requirements

Option 2: Direct research

Interview users, ask questions about their problems, propose
potential solutions, examine those solutions

Embed your client in your design team, or better yet, become an
anthropologist in your client’s environment

Build requirements documents that demonstrate your
understanding of the requirements, iterate

Empowers your team with credibility and authority

Documentation
can help us
address problems
of understanding

* Documentation helps our whole
team make sure they are building
the right thing

 Documentation can help specify
implicit requirements

* Documentation can also serve as
an artifact to iterate on with a
client

Documentation should also capture non-
functional requirements

* Qualities that reflect the execution of the system
* Accessibility
Availability
Capacity
Efficiency
Performance
Privacy
Response Time
Security
Supportability
Usability

* Example: “A 4-core server with 16 GB RAM should be able to service at
least 200 simultaneous clients with less than 300ms latency”

10

Documentation should also capture non-
functional requirements

* Qualities that reflect the evolution of the system
e Testability
* Maintainability
* Extensibility
 Scalability

* Example: “A 3" party component built conforming to the API defined
in the Canvas LMS specification can create, modify, and delete
assignments on behalf of an authenticated user”

11

Formal Specifications can be
used to document
requirements

[Search] [txt|html|pdf|ps|with errata|bibtex] [Tracker] [WG] [Emaill [Diff1]

From: draft-ietf-http-vil-spec-rev-06 Draft Standard
Obsoleted by: 7230, 7231, 7232, 7233, 7234, 7235 Errata exist
Updated by: 2817, 5785, 6266, 6585
Network Working Group R. Fielding
Request for Comments: 2616 UC Irvine
Obsoletes: 2068 J. Gettys
Category: Standards Track Compaq/W3C
J. Mogul
Compaq
H. Frystyk
W3C/MIT
L. Masinter
Xerox
P. Leach
Microsoft
T. Berners-Lee
W3C/MIT
June 1999

Hypertext Transfer Protocol -- HTTP/1.1
Status of this Memo

This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
0fficial Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice
Copyright (C) The Internet Society (1999). All Rights Reserved.
Abstract

The Hypertext Transfer Protocol (HTTP) is an application-level
protocol for distributed, collaborative, hypermedia information
systems. It is a generic, stateless, protocol which can be used for
many tasks beyond its use for hypertext, such as name servers and
distributed object management systems, through extension of its
request methods, error codes and headers [47]. A feature of HTTP is
the typing and negotiation of data representation, allowing systems
to be built independently of the data being transferred.

HTTP has been in use by the World-Wide Web global information
initiative since 1990. This specification defines the protocol
referred to as "HTTP/1.1", and is an update to RFC 2068 [33].

* Define all expected behaviors under all

expected conditions

 Works best when domain is well-

understood

1.2 Requirements

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [34].

An implementation is not compliant if it fails to satisfy one or more
of the MUST or REQUIRED level requirements for the protocols it
implements. An implementation that satisfies all the MUST or REQUIRED
level and all the SHOULD level requirements for its protocols is said
to be "unconditionally compliant"; one that satisfies all the MUST
level requirements but not all the SHOULD level requirements for its
protocols is said to be "conditionally compliant."

1.3 Terminology

This specification uses a number of terms to refer to the roles
played by participants in, and objects of, the HTTP communication.

connection

A transport layer virtual circuit established between two programs
for the purpose of communication.

message
The basic unit of HTTP communication, consisting of a structured
sequence of octets matching the syntax defined in section 4 and
transmitted via the connection.

request
An HTTP request message, as defined in section 5.

response
An HTTP response message, as defined in section 6.

12

User Stories can document
requirements from a user’s point of
view

Specifying what should happen, for whom, and why

As a <role> | can <capability>,
so that <receive benefit>

Conditions of Satisfaction:

Given <interaction with software,
state of environment>, | expect
<behavior and side effects>

13

Writing User Stories: INVEST

* Independent
* Negotiable

* Valuable

e Estimable

* Small

* Testable

As a <role> | can <capability>,
so that <receive benefit>

14

User Stories: Example — Backup
Software

As a computer user, | want to backup my entire hard drive so
that my files are safe

As a typical computer user, | want to specify folders to backup,
so that my most important files are safe

As a power user, | want to specify subfolders and filetypes
NOT to backup, so that my backup doesn’t fill up with things
that | don’t need to preserve

15

Conditions of Satisfaction: Backup
Software

* How do we know if we have satisfied the user? Lots of detail doesn’t
fit onto 3x5 card:
* Where do backups get saved?
 What if backup system is unavailable?
 What if backup system is full?
* Do backups ever get rotated/deleted?

* Conditions of satisfaction are a list of common cases and special cases
that must work

16

Conditions of Satisfaction: Backup
Software

e “As a typical computer user, | want to specify folders to backup, so
that my most important files are safe”

* My conditions of satisfaction are:

* |f the network and remote backup service are available, and | am not over
my storage quota, the backup should be successful.

» After successfully running, an updated copy of each of the files that |
have requested to be backed up are stored in a redundant, cloud
filesystem

* |f a backup is not successful, an error message is prominently displayed
indicating the cause of failure to be in the software, the network, the
remote backup storage, or other

17

Non-Functional Requirements: Backup
Software

* Does “After successfully running, an updated copy of each of the files
that | have requested to be backed up are stored in a redundant,
cloud filesystem” guarantee success?

* What was the transfer speed? (Performance)

* How much temporary disk space did it use to create the backup?
(Performance)

 How long did | spend on the phone with support to set up the software?
(Usability)

* Are my files encrypted, or access controlled at all? (Security)

18

Requirements: Which to pick?

* There are four knobs you can adjust when negotiating requirements:
* Project scope
* Project duration
* Project quality
* Project cost
* Usually cost is most constrained: you have a budget to spend, and you
have a headcount of developers to pay

* Determining feasible scope, timeline and maximizing quality is the
subject of much software engineering research, see next lesson

19

Learning Goals for this Lesson

* At the end of this lesson, you should be able to
* Explain the overall purposes of requirements analysis
* Enumerate and explain 3 major dimensions of risk in Requirements Analysis

* Explain the difference between functional and non-functional requirements,
and give examples of each

* Explain the notion of a user story, with examples. (including conditions of
satisfaction)

20

	CS 4530: Fundamentals of Software Engineering�Lesson 3.1: Capturing User Requirements
	Theme for this week’s lessons: No Silver Bullet
	Outline of this week’s lessons
	Learning Goals for this Lesson
	Overall question:�How to make sure we are building the right thing
	Why is requirements analysis hard?
	Soliciting Requirements
	Soliciting Requirements
	Documentation can help us address problems of understanding
	Documentation should also capture non-functional requirements
	Documentation should also capture non-functional requirements
	Formal Specifications can be used to document requirements
	User Stories can document requirements from a user’s point of view
	Writing User Stories: INVEST
	User Stories: Example – Backup Software
	Conditions of Satisfaction: Backup Software
	Conditions of Satisfaction: Backup Software
	Non-Functional Requirements: Backup Software
	Requirements: Which to pick?
	Learning Goals for this Lesson

